Skip to main content
The HADES Yield Prediction System – A Case Study on the Turkish Hazelnut Sector.

Bregaglio, S., Fischer, K., Ginaldi, F., Valeriano, T.T.B., Giustarini, L., 2021.  
Frontiers in Plant Science. 
doi: https://doi.org/10.3389/fpls.2021.665471 


Comparing process-based wheat growth models in their simulation of yield losses caused by plant diseases. 

Bregaglio, S.,  Willocquet, L., Kersebaum, K.C., Asseng, S., Savary, S., 2021. 
Field Crops Research 265, 108108. 
doi: https://doi.org/10.1016/j.fcr.2021.108108 


Model-based evaluation of climate change impacts on rice grain quality in the main European rice district. 

Cappelli, G., Bregaglio, S., 2021.  
Food and Energy Security 
doi: https://doi.org/10.1002/fes3.307 


Agricultural land suitability in a changing climate: a case study for hazelnut in Australia.

Jha P.J., Materia S., Zizzi G., Costa Saura J., Trabucco A., Evans J., Bregaglio S., 2021. 
Agricultural Systems 186, 102982. 
doi: https://doi.org/10.1016/j.agsy.2020.102982 


A process-based model to simulate sugarcane orange rust severity from weather data in Southern Brazil.

Valeriano, T.T.B., de Souza Rolim, G., Manici, L.M., Giustarini, L., Bregaglio, S., 2021.   
International Journal of Biometeorology 65(12), 2037–2051. 
doi: https://link.springer.com/article/10.1007/s00484-021-02162-5 


Varietal susceptibility overcomes climate change effects on the future trends of rice blast disease in Northern Italy.

Wang, H., Mongiano, G., Fanchini, D., Titone, P., Tamborini, L., Bregaglio, S., 2021.  
Agricultural Systems 193, 103223 
doi: https://doi.org/10.1016/j.agsy.2021.103223 


Analysing the behaviour of a hazelnut simulation model across growing environments via sensitivity analysis and automatic calibration. 

Bregaglio, S., Giustarini, L., Suarez, E., Mongiano, G., De Gregorio, T., 2020. 
Agricultural Systems 181. 
doi: https://doi.org/10.1016/j.agsy.2020.102794 


Reuse of process-based models: automatic transformation into many programming languages and simulation platforms

Midingoyi, C.A., Pradal, C., Athanasiadis, I.N, Donatelli, M., Enders, A., Fumagalli, D., Garcia, F., Holzworth, D., Hoogenboom, G., Porter, C., Raynal, H., Thorburn, P., Martre, P., 2020.
Silico Plants, Volume 2, Issue 1, 2020, diaa007, Published: 06 October 2020
doi: https://doi.org/10.1093/insilicoplants/diaa007


Susceptibility of novel Italian rice varieties to panicle blast under field conditions

Mongiano, G., Titone, P., Bregaglio, S., Tamborini, L., 2020.
bioRxiv 2020.04.23.057554
doi: https://doi.org/10.1101/2020.04.23.057554


Understanding effects of genotype × environment × sowing window interactions for durum wheat in the Mediterranean basin.

Padovan, G., Martre, P., Semenov, M.A., Masoni, A,. Bregaglio, S., et al., 2020. 
Field Crops Research 259, 107969. 
doi: https://doi.org/10.1016/j.fcr.2020.107969 


Spatializing Crop Models for Sustainable Agriculture

Ginaldi F., Bajocco S., Bregaglio S., Cappelli G., 2019.
In: Farooq M., Pisante M. (eds) Innovations in Sustainable Agriculture. Springer, Cham, 2019.
doi: https://doi.org/10.1007/978-3-030-23169-9_20


Identifying the most promising agronomic adaptation strategies for the tomato growing systems in Southern Italy via simulation modeling

Giuliani, M.M., Gatta, G., Cappelli, G., Gagliardi, A., Donatelli, M., Fanchini, D., De Nart, D., Mongiano, G., Bregaglio, D., 2019.
European Journal of Agronomy, Volume 111, 2019, 125937, ISSN 1161-0301
doi: https://doi.org/10.1016/j.eja.2019.125937

 

 

Progetto Agridigit

AgriDigit prevede un coordinamento e sei sottoprogetti che coinvolgono svariate Unità Operative, con una caratterizzazione scientifica differente tra loro

TUTTI I SOTTOPROGETTI